Visual Attention Based Motion Object Detection and Trajectory Tracking
نویسندگان
چکیده
A motion trajectory tracking method using a novel visual attention model and kernel density estimation is proposed in this paper. As a crucial step, moving objects detection is based on visual attention. The visual attention model is built by combination of the static and motion feature attention map and a Karhunen-Loeve transform (KLT) distribution map. Since the visual attention analysis is conducted on object level instead of pixel level, the proposed method can detect any kinds of motion objects provided saliency without the affection of objects appearance and surrounding circumstance. After locating the region of moving object, the kernel density is estimated for trajectory tracking. The experimental results show that the proposed method is promising for moving objects detection and trajectory tracking.
منابع مشابه
Applying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملCombining Motion Segmentation and Feature Based Tracking for Object Classification and Anomaly Detection
We present a novel pipeline for automated visual surveillance system based on utilising conventional adaptive background modelling in-conjunction with optic flow to provide motion sensitive foreground/background segmentation. Furthermore active contours are then used to detect robust motion boundaries within the scene from which PCA is used for object classification. Feature based tracking is t...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملTitle of Thesis : Integration and Evaluation of a Video Surveillance System
Title of Thesis: Integration and Evaluation of a Video Surveillance System Mohamed F. Abdelkader, Master of Science, 2005 Thesis directed by: Professor Rama Chellappa Electrical and Computer Engineering Department Visual surveillance systems are getting a lot of attention over the last few years, due to a growing need for surveillance applications. In this thesis, we present a visual surveillan...
متن کامل